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ABSTRACT

We explore a new method for investigating the density and velocity structure
of the Be star equatorial disk in LS I +61°303, based on its variable radio emis-
sion. At a particular radius the method yields a circularly shaped solution locus
in the radial (v,) and circular (v.) components of the disk gas velocity, which al-
lows us to set limits on v, and v, at that radius. For a given model of the circular
velocity, v.(r), we can derive v,.(r) and the gas density, p(r) within a constant.
While p(r) depends on the assumed model for v.(r), we find the fractional change
in gas density at any radius does not. This allows us to study the evolution in p(r)
with time. The analysis indicates that the previously demonstrated ~ 4.6 year
modulation in radio properties results from an outward moving density enhance-
ment or shell in the equatorial disk with a velocity of ~ 1.0 km s~!. We propose
that each new shell ejection may be triggered by the interaction of a short lived
relativistic wind (ejector phase) from the neutron star, with the rapidly rotating
Be star. Our best estimates of the mass accretion rate of the neutron star are in
the range ~ 0.001 to ~ 0.01 of the Eddington accretion limit. This translates to

1

an expected luminosity range of ~ 10% to ~ 10% ergs s=! which is comparable

to estimates of the total X-ray and v-ray luminosity for LS T +61°303.

Subject headings: stars:emission-line — radio continuum:stars— Xrays:binaries—
methods:data analysis
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1. Introduction

In 1977, the highly variable radio source GT 0236+610 was discovered during a survey
of the galactic plane for variable radio emission (Gregory and Taylor 1978). Based on an
accurate radio position, GT 02364610 was identified with LS I +61°303 (Gregory et al.
1979), an emission line star at a distance of 2.3 kpc (Frail and Hjellming 1991, Steele et al.
1998). Based on IUE ultraviolet and ground based spectroscopy, Hutchings and Crampton
(1981) classified the primary as B0-B0.5 main sequence star with a high rotation velocity,
undergoing mass loss through an equatorial disk. It exhibits unusually broad, double-peaked,
and variable H, and Hj emission lines. More recently, Howarth (1983) classified the star as
a B4.5 111, while the photometric analysis of Paredes and Figueras (1986) is consistent with
a BO-B0.5 IIT or BO V primary star.

LS T +61°303 is one of a group of about 20 Be X-ray binary systems (van den Heuvel
and Rappaport 1987). These systems have orbital periods of tens of days or longer, and the
X-ray emission is considered to arise from wind accretion onto a neutron star companion.
Approximately half of these objects show direct evidence for a neutron star companion in the
form of X-ray pulsations. The non-pulsed emission is generally transient or highly variable
with outburst durations similar to the orbital periods, luminosities in the keV range of
1036 — 1038 erg s7! and hard spectra (kT ~ 10 — 20 keV). These outbursts are thought to
occur as a result of increased wind accretion rates on the neutron star companion due to a
combination of orbital eccentricity and irregular episodes of enhanced equatorial mass loss
from the Be star (see van den Heuvel 1994).

LS T +61°303 distinguishes itself from other members of the group by its strong out-
bursting radio emission. The radio outbursts exhibit a period of 26.496 days (e.g., Taylor
and Gregory 1982, Gregory 2002), which is interpreted as the orbital period. The phase
and peak flux density of these outbursts are known to exhibit a ~ 4.6 year periodic mod-
ulation (e.g., Gregory et al. 1999, Gregory 2002). Zamanov and Marti (2000) have also
recently demonstrated a modulation on the same time scale, in the EW(H,,) and AV,ca, the
H, equivalent width and double peak velocity separation, respectively. This latter results
strongly suggests that the modulation in the radio emission is related to changes in the Be
star equatorial disk properties.

The X-ray emission of LS T +61°303 (e.g. Taylor et al. 1996, Leahy et al. 1997, Harrison
et al, 2000) is weak (103* erg s~! at maximum), compared to other members of the group.
The 0.1-2.5 keV X-ray emission has been observed to vary by a factor of 10 over one orbital
period (Taylor et al. 1996), but no X-ray pulsations have been detected. Paredes et al.
(1997) reported an approximately 5 fold 26.7 + 0.2 day modulation in the RXTE/ASM 2-10
keV X-ray flux. A more recent analysis of 1881 days of RXTE/ASM data (Leahy 2001)
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yielded a period of 26.415 4 0.05 days, which is consistent with the more accurate period
derived from the radio data of 26.496+£0.0028 days (Gregory 2002). Within the measurement
uncertainties the X-ray maximum always occurs at a constant orbital phase associated with
periastron.

The ASCA observations of Leahy et al. (1997) show that the 0.5-10 keV spectrum
is best described by a relatively hard power-law, and therefore the emission mechanism is
non-thermal in nature. Their power-law spectral fit also yields a hydrogen column density
of ~ 5 — 6 x 10?* cm? which is in good agreement with the column density of 10?* cm 2
measured in the radio by Frail and Hjellming (1991). LS I +61°303 is also the probable
counterpart to the y-ray source, 2CG 135401 (e.g., Gregory and Taylor 1978, Kniffen et al.
1997). If the COS-B 7-ray emission is associated with LS I 461°303 then 7- ray luminosities
of 1036 — 1037 erg s~! in the > 100 MeV range are inferred !. While these luminosities are
similar to other high-mass X-ray binaries, the shift to higher photon energies points to some

fundamental difference in the X-ray/y-ray emission process.

A variety of models have been proposed to explain the observations. Maraschi and
Treves (1981) discussed a model in which the companion is a moderately young pulsar and
the relativistic electrons responsible for the radio emission are produced by the interaction of
the relativistic wind of the neutron star and the normal wind from the primary. Lipunov and
Nazin (1994) proposed a model in which relativistic electrons injected by a radio pulsar are
captured by the magnetosphere of the Be star near periastron passage where they are cooled
slowly by synchrotron losses. Paredes et al. (1991) employed a van den Laan adiabatic
expansion model modified to include particle injection over an extended interval of the orbit.

Taylor and Gregory (1982, 1984) proposed a model in which the periodic radio outbursts
result from variable accretion onto a compact companion in an eccentric orbit (e ~ 0.8) with
a semi-major axis of about 5 x 10*? ¢cm. Taylor et al. (1992) computed the accretion rate on
to a neutron star secondary in orbit within the equatorial wind of the Be star primary for a
variety of eccentricities. For e > 0.4 two accretion peaks occur. The biggest corresponds to
periastron passage through the densest portion of the wind and a second smaller peak occurs
at a later phase when the relative velocity of receding neutron star and the Be star wind is a
minimum. Marti and Paredes (1995) investigated the variation of this structure with Be star
equatorial wind velocity and found that both the height and delay of the second peak is a
function of the Be star wind velocity. A variation of wind velocity from 20 to 2 km/s results
in a variation in the radio phase of the peak from 0.62 to 0.92 for e = 0.7. Also the secondary

'Recently, Leahy et al. (1997) estimated the radio to 200 MeV ~-ray luminosity of LS I +61°303 at

~ 10% erg s~1.
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peak is higher and narrower the larger the wind velocity 2. Relativistic electrons produced
near periastron will suffer severe inverse-Compton losses (e.g. Taylor et al. 1992, Marti and
Paredes 1995, Leahy et al. 1997) from scattering off photons in the radiation field of the
primary, giving rise to X-ray and y—ray energies. Thus near periastron we expect an X-ray
and possible gamma-ray outburst but very little in the way of radio emission. The available
X-ray observations all exhibit a maximum around periastron. For the second accretion peak
the neutron star is further from the primary and inverse-Compton losses will be much less.

LS T +61°303 also exhibits ~ 4.6 year periodic modulation of the phase and peak flux
density of these radio outbursts (e.g. Gregory 1999, Gregory et al. 1999). The shape of the
peak flux density modulation is sinusoidal in appearance while the phase modulation exhibits
a saw-tooth waveform. Recently Gregory (2002, hereafter paper III) reported improved
Bayesian estimates of both the orbital period P;, and modulation period, P, based on the
full Green Bank Interferometer (GBI) data set and improved estimates of the outburst times
and peak flux densities. The new estimates are P; = 26.4960 + .0028 days and P, = 1667 +8
days. That paper reached a number of conclusions which are important for the current
paper, that are listed below.

1. The peak radio emission in each orbit occurs somewhere in a range of P; radio (orbital)
phase extending from ~ 0.4 to 0.9. The zero of radio phase is by convention Julian
Day 2,443,366.775, the date of the first radio detection of the star.

2. Periastron passage is estimated from both the radio and X-ray measurements to occur
at radio phase of ~ 0.4 which means that radio outburst peaks are confined to one half
of the orbit extending from periastron to apastron.

3. The characteristic outburst profiles shown by the cross correlation templates are very
broad, indicative of measurable accretion over all of the orbit.

4. The optical depth at 8.3 GHz is always << 1 while the optical depth at 2.2 GHz can
reach values of ~ 2.7.

5. A test of the precessing Be star model of Lipunov and Nazin (1994) indicates that it
is unlikely to be the correct mechanism to explain the 1667 day periodic modulation
and that the neutron star orbit is coplanar with the Be star equatorial disk.

21t should be noted, that in the analysis of Taylor et al. (1992) and Marti and Paredes (1995), the circular
component of the equatorial wind velocity was assumed to be zero.
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Massi et al. (2001) have found evidence for a jet like structure in their recent EVN
observations of the source and estimated the intrinsic velocity at 0.4 c. It is tempting
to suppose that the 1667 day modulation in the outburst peak flux density results from
variations in Doppler beaming arising from jet precession. However, such a mechanism does
not account for the observed saw tooth shaped modulation of the outburst orbital phase
with the same period (Gregory 2002).

In the next section we present details of a method for exploring the velocity and density
distributions of the Be star equatorial disk. We then extract these quantities for all of the
GBI data and examine their average radial dependence. We also examine the dependence of
these disk parameters on P, modulation phase. Finally we discuss the implications of these
results with respect to models for LS I +61°303 and Be stars in general.

2. Method

In this section we present details of a method for exploring the velocity and density
distributions of the Be star equatorial disk. This information is derived from variations in
the synchrotron radio emission associated with accretion by a companion neutron star in
an eccentric orbit which is co-planar with the disk. The method is based on the following
assumptions.

1. For the purposes of this exploratory study we assume the following properties of the
binary system following Marti and Paredes (1995). The mass and radius of the Be
star are M, = 10My, R, = 10R; and M, = 1.4M; for the mass of the companion
neutron star. We adopt an orbital period P, = 26.496 days, an eccentricity, e = (.82
(Martf and Paredes 1995), and a radio phase of periastron, ¢, = 0.4 (Gregory, 2002).
It should be emphasized that apart from the period, the other orbital parameters are
very uncertain. Estimates of the eccentricity range from 0.3 — 0.87. We have adopted
the best orbital solution reported by Marti and Paredes (1995), but have also explored
a less eccentric orbit (see discussion).

2. The radio flux density at 8.3 GHz, S, is directly proportional to M, the rate at which
mass is accreted by the neutron star from the Be star equatorial disk. We write this
as

S(r,t) = K(r)M,(r, 1), (1)

where K (r) is the constant of proportionality at a particular radius of the neutron
star from the Be star. In principle K(r) may be a function of radius for a variety of
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reasons to do with different accretion regimes, inverse-Compton cooling of the radio
emitting relativistic gas by Be star photons, and variable geometry (discussed further
below). Equation (1) assumes a linear relationship between S and M,,. This requires
the optical depth of the 8.3 GHz emission be always << 1, which was established in
paper III.

In general S(r,t) will depend on the past history of K(r)M,(r,t) over an interval of
time, 7, and a corresponding range in orbital radius Ar. In this exploratory study we
will assume Ar is small compared to our bin size in orbital radius so that equation (1)
applies. One indication that 7 < 1 day comes from high time resolution observations
at 10.5 GHz (Gregory et al. 1979). On three occasions we observed a large step like
flux density increase on a time scales of ~ 1 hour.

. We assume that the equatorial disk is circularly symmetric. In this paper we examine
(a) the average properties of the disk and (b) their variations from the average within
nine P, phase bins. In case (a) we only require circular symmetry when the average is
taken over all P, phase. In case (b) we will be averaging over the orbits within each of 9
P, phase bin, which will require circular symmetry when averaging over approximately
7 orbits or ~ 185 days. In this study we neglect the effect of possible variations of
K(r) with P, phase.
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Fig. 1.— Panel (a) shows a typical outburst at 8.3 GHz as a function of time, which exhibits

a rapid increase in flux density compared to the more gradual decline. Panel (b) shows

the same outburst when viewed as a function of orbital radius.

direction of increasing time.

The arrows indicates the

What is our motivation for the second assumption? In the past we have employed the
term outburst to characterize the variations in radio emission in each orbital cycle. The

term lacks a precise definition but the chief characteristics of an outburst are perhaps best
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represented by the giant radio outbursts from Cygnus X-3 (Gregory et al. 1972). These have
been modelled by many authors as adiabatically expanding cloud of relativistic plasma with
embedded magnetic field. On this basis an outburst is characterized by a rapid increase in
flux density (optically thick phase) followed by a more gradual decay (optically thin phase),
with the increase occurring at high frequencies first and the maximum progressively delayed
at lower frequencies as a result of the increased opacity at lower frequencies. The term implies
a short period of relativistic particle acceleration, although as mentioned in the introduction,
Paredes et al. (1991) pointed out the need for continued particle injection over an extended
interval in the case of LS T +61°303. In this paper we go a step further and argue that there
is evidence for particle production throughout the entire orbit.

From 1994 January to 2000 October (Ray et al. 1997) detailed monitoring of LS I
+61°303 was performed (several times a day)with the National Radio Astronomy Observa-
tory Green Bank Interferometer (GBI) at 8.3 and 2.2 GHz. Panel (a) of Fig. 1 shows a
typical outburst at 8.3 GHz as a function of time, which exhibits a rapid increase in flux
density compared to the more gradual decline. For LS I +61°303 the optical depth at 8.3
GHz is always << 1 so the increase in flux density is not consistent with the adiabatically
expanding optically thick cloud model. Panel (b) shows the same outburst when viewed as
a function of orbital radius. The arrows indicates the direction of increasing time. In these,
perhaps more natural coordinates, the rise is if anything more gradual than the decay. The
rapid rise when plotted as a function of time comes about as a result of the rapid motion
of the neutron star near periastron in the very eccentric orbit. The radio emission is seen
to vary continuously about the orbit, although it is much weaker on the inbound portion of
the orbit.

The mass accretion rate, M, by a compact object traveling though a uniform density
medium (Bondi and Hoyle, 1944) with density p is given by

M, = T2 Vrel Py (2)
where the accretion radius, 72, is given by
2G M,
Tace = =3 ” (3)

rel

Here v, is the relative velocity of the neutron star, of mass M, to the gas in the equatorial
disk. This equation assumes that r,.. is smaller than the length scale of the density and
velocity variations. This is unlikely to be the case in the current problem for all orbital radii,
but we will continue to use this relationship for M,, and simply absorb any departures from
this relationship in the K(r) term. In this exploratory study we also ignore any roche lobe
overflow that may occur near periastron.



The relative velocity is given by

V2, =02 v —2v, vy, (4)

rel —

where v,, is Be star equatorial disk velocity, and v, is the neutron star’s orbital velocity.
Combining equations (2) and (3) we obtain

. 4r(GM,,)?

M, — # (5)

Urel

Thus M,, depends directly on the local gas density and inversely on the cube of the relative
velocity. In a highly eccentric orbit like that proposed for LS I +61°303, both the gas density
and the relative velocity will vary significantly around the orbit. Since we are assuming S o
Mn then

5) = k() TR, )
k(r)olr) = S(ria(r). )

where
k(r) = K(r)4r(GM,)?, (8)

Thus knowledge of S(r) and v,¢(r) is sufficient to determine k(r)p(r), where K(r) is the
unknown proportionality constant introduced in equation (1) and p(r) is the equatorial disk
density at 7.

In equation (6), we explicitly assume that S(r) is directly proportional to p(r) and v} (r)
at radius r, not the values at an earlier radius. This requires that any delay in the production
of relativistic electrons from the accretion of disk gas at radius r, and in the transport of
these relativistic electrons to a region where there synchrotron emission can escape to the
observer, is negligible for the radial resolution we are employing for this analysis. If the disk
is inclined sufficiently to the line of sight we may be able to view the particle generation
region directly. Wood et al. (1997) deduced a disk half-opening angle of 2.5° for the Be star
¢ Tau, from modeling the optical continuum spectropolarimetry. Thus Be star disks may be
very thin. Hutchings and Crampton (1981) estimated the angle between the line of sight and
the plane of the disk of LS T +61°303 at 15 — 20°, based on their spectroscopic data. This
combination might permit an unobscured line of sight to the relativistic particle acceleration
region and provide a simple explanation for why the optical depth at 8.3 GHz is << 1.

If there is no unobscured line of sight, the relativistic electrons must first propagate
to optically thin regions above and below the plane of the disk, before radio emission can
escape to the observer. At first glance this situation would appear to be at odds with the
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observation that the optical depth of the 8.3 GHz radio emission is always << 1. However,
if the particle production is continuous then there will always be a population of radiating
electrons in the optically thin region, and this emission can dominate over emission from
more opaque regions where the electrons are initially accelerated. Recent estimates from
VLBI observations (Peracaula et al. 1998, Massi et al. 2001) indicate expansion velocities
of the synchrotron emitting electrons ranging from of ~ 0.06 ¢ to ~ 0.4 c¢. Using the lower
of these estimates leads to a delay of only ~ 0.04 d to transport the relativistic electrons a
distance equal to the major axis of the binary orbit.

Fig. 2 illustrates the geometry of the assumed orbit and the three velocities v,, v, v,
involved in computing v,.;. The total Be star equatorial disk velocity v,, is given by v2 =
v+ 2. For such an orbit v, ranges from 511 km s~! at periastron to 51 km s~ at apastron.
The spectroscopic observations indicate large values for v.. For example, the Balmer lines
show double-peak emission with peak separations of ~ 440 km s in Hz and ~ 350 km
s in H, (Gregory 1979, Hutchings and Crampton 1981, Zamanov et al. 2001). Hutchings
and Crampton (1981) measured vsini = 360 £ 25 km s for the primary star. In addition,

L are observed, indicating larger Doppler broadening

very broad H, wings of ~ 1100 km s~
velocities than those of other B stars. Such profiles are, however, common in cataclysmic
variables, in which a disk forms around a compact star whose Keplerian velocities extend
to much greater values than main sequence or larger stars. If the high velocity emission is
from a disk about the secondary then it should execute the orbital velocity of the secondary,
however, Hutchings and Crampton (1981) were unable to find any direct evidence of emission
from the secondary. Alternatively, the high velocity wings might indicate that the inner part
of the disk co-rotates with the star, perhaps coupled by the star’s magnetic field. Yet another
possibility is non-coherent scattering, in which line photons are scattered into the line wings
so they can escape from deeper layers in the disk where the source function is large, a
long-known result from optically thick slabs (Hummel 2000).

The V/R ratio of the two emission line peaks is variable, but normally the long wave-
length peak is stronger (as expected for a slow moving expansion). Hutchings and Crampton
(1981) conclude that the star is undergoing mass loss through an equatorial disk with a high
inclination (sini ~ 1).

From equation (6) the observed flux density depends on the relative velocity of the

neutron star and the wind. The relative velocity, v, is given by
2

V2, =02 + v+ v — 20,0, 510 ¢ — 20,0, cos B, 9)
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Fig. 2.— The orbit of LS I +61°303 drawn to scale illustrating the geometry used in the
calculations.
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Fig. 3.— Sample solution loci for the radial and circular components of Be star equatorial
disk velocity at three different radii.
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where v, is positive for counter clockwise rotation. The angle ¢ between the neutron star
velocity and the radial component of the equatorial disk is given by
e sin 6

T
= tan ————— 1
10) 2+arcan1_ecose (10)

Now consider two points on the neutron stars orbit at the same radius from the Be star.
The first point is on the outbound portion of the orbit where the neutron star is traveling
from periastron to apastron (out), and the second is on the ingoing portion of the orbit (in).
Because both points have the same value of r, the density, p(r), and magnitudes of v,(r) and
ve(r) are the same. This follows from the circular symmetry assumption. The angle between
v, and v, is the same for both points. What brakes the symmetry is the difference in angle
between v,, and v, at the two points. Thus if v, # 0, then v,e put(r) 7 Vperin(r) and hence

Sout 7é Szn .

From the assumption of circular symmetry we can write

k(r)p(r) = Sout(r) Ver out(r) = Sin(r) Vyerin(7) (11)

From a knowledge of S,u:(r), Sin(r), and v, (r) we can solve for a solution locus in v, and
v. that satisfies equation (11). The solution locus, which is derived in the Appendix, can be
written in the form

(v, + Bvy, cos @) + (v, — vy 8in @) = (5% — 1)v2 cos ¢, (12)

where
(5% 41

(G =1

5= (13)

From the form of this equation we see that the solution is a circle in the v,, v, plane with
radius = /(8% — 1)v,| cos ¢|, and center at (—fv,, cos @, v, sin ). We can parameterize the
solution locus in terms of the angle ¥ (see Fig. 3) between the radius vector from the center
of the solution circle to a point on the locus and the direction of the positive v,.

vr(r) = wn(r)[VB(r)?> =1 [cos(r)| cosyp—B(r) cos¢(r)]
ve(r) = wa(r)[V/B(r)? =1 [cos¢(r)| sin + sin@(r)] (14)

Fig. 3 illustrates the solution locus for representative data at three different radii, corre-
sponding to /R, = 1.97,2.89,4.73, where R, is the radius of the Be star. The radius of the
circle shows a strong dependence on r, the distance of the neutron star from the Be star. In
general the observed values of S, (r) and S;,(r) lead to solution loci in which v, is positive
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but v, can be either positive or negative. Previous estimates of the outflow velocity at the
surface of Be stars, based on the analysis of the infrared emission of equatorial disks (Waters
1986), are in the range 2 — 20 km s~!. The velocity radius of the solution locus, as shown in
Fig. 3, varies from 4195 km s™! at r/R. = 1.97 to 122 km s™! at /R, = 14.9. Thus only a
small fraction of each solution locus is likely to be physically meaningful, corresponding to
values of v in the vicinity of ¢ = 7.

3. Radial Distributions of v,.(r) and k(r)p(r)

The velocity of gas in the Be star equatorial disk wind can be decomposed into v.(r)
and v, (r). In this section we derive v, (r) and k(r)p(r) for all of the 8.3 GHz data assuming
different models for v.(r). The steps on the calculation are as follows.

1. The data consists of daily average flux densities as a function of time, S(t), expressed
as a Julian Day (JD) number. The first step is to translate our origin of time to a JD
corresponding to periastron passage. Call this JD,.,;. The GBI data spans roughly
1.5 P, cycles so we chose a JD,,; close to the start of the first of these P, cycle.
We used the radio phase of periastron passage (0.4) given in paper III to arrive at
JDperi = 2,449,471.5. The data were then converted to an orbital time according to

tory = <M - IntegerPart[Mo P (15)
Py Py
2. Each orbit was then divided into two halves, one corresponding to the outbound portion
of the neutron’s star orbit and the other to the inbound phase of the orbit. For each
half the values of t,,, were converted to values of r in two steps. First they were
converted to orbital phases, 8, by solving the differential equation

dbtors] \/ G(Mp. + My)

(1—e Cos[d])* =0, (16)

dt a3(l —e2)3

assuming the initial condition #[0] = 7 radians at periastron. Here e = the orbital
eccentricity and a = the semi-major axis which is given by Kepler’s third law.

- (PfG(MBe + MN)>1/3

472

(17)

These orbital phases were converted to orbital radii, r, from the geometry of an ellipse.

o] = a(l —e?)

~ 1—e cos[f] (18)
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3. What we are after are pairs of Sy, (r) and S;,(r) with the same value of r on the
outbound and inbound portions of each orbit. The daily measurements of flux density
did not always provide flux pairs at the same value of r, so it proved necessary to
linearly interpolate the measured values onto a finer grid in r before pairing. These
flux density pairs together with the P phase of the midpoint of the orbit, computed
assuming P, = 1667 days, were the fundamental data for the remainder of the analysis.

4. Values of v, were then computed for 15 uniformly spaced values of r, from the
Sout(7), Sin(r) pairs and equations (13) and (14), assuming a specific model for v..

5. We computed values of k(r)p(r) from equations (7), (9), and (10), for the same 15
uniformly spaced samples of r.

These calculations were carried out for the two different averages of the data. In the
first case (a), we are after the average properties of the disk versus radius where we are
averaging over all P, phase. In the second case (b), we divide the data into 9 P, phase bins
and examine the average disk properties as a function of radius within these phase bins and
the fractional change in density from that found from the average in case (a).

3.1. Average disk properties

Fig. 4 shows the average outbound and inbound flux densities versus radius for the
entire Green Bank Interferometer data set which spans approximately 1.5 Py cycles.
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Fig. 4.— The average outbound and inbound flux densities in 15 orbital radii bins.
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The solution loci illustrated in Fig. 3 allows us to set limits on the minimum v, (r)
at any given radius. We obtain the minimum value of v,(r) and the corresponding v.(r),
from equations (14), by setting ¥ = . The value of  used to compute v,.(r) in equa-
tion (14) is computed from the ratio of S,/ S;, at any particular radius for all of the data.
We will refer to these as the velocity components at minimum v, (r), and designate them by
[0,(7), 0e(7)]smwr. Other solutions for v,.(r) can be obtained from the solution loci by adopting
different models for v.(r) that have been proposed in the literature. The other models con-
sidered for v.(r), which are discussed below, are designated Zero, Keplerian, Mennickent, and
Co-rotate. The [v,.(r),v.(r)] solutions for these models are compared to the [v,.(7), ve(r)]mor
solutions in panels (a) and (b) in Fig. 5.

Panel (a) of Fig. 5 shows that [v,(r)]mer, as indicated by the curve labeled mvr, first
increases with radius out to 7/ R, ~ 6, then exhibits a broad maximum between /R, ~ 6—12

1

around a value of 25 km s™, and drops rapidly beyond. At the inner radius this analysis

probes (7/R, ~ 2) we obtain [v,(r)],er ~ 5 km s71.

Examination of equation (14) indicates that for ¢ = 7, v.(r) is given by
Ve = Uy, SIN @, (19)

i.e., the circular component of the Be star equatorial disk velocity is equal to the azimuthal
component of the neutron star’s velocity. Thus the disk radial velocity is a minimum when the
relative circular motion of the wind and neutron star is zero. Since the angular momentum
of the neutron star is conserved we have that the [v.(r)],ue o< 1. This 1/r dependence is
indicated by the line in panel (b) labeled “mvr”.

Extrapolating the curve labeled [v, ], of Fig. 5(a) to the surface of the Be star indicates
an initial outflow velocity of v, of a few km s~!. This falls in the range of initial outflow
velocities computed for the Be star equatorial disk in LS T +61°303 by Marti and Paredes
(1995), and is typical of Be star equatorial disk outflow velocities in general (Waters 1986).
This would suggest that perhaps [ve(r)|mer is a good estimate of the circular component,
ve(r), of the gas velocity. It is interesting to note that this choice of circular velocity would
result in a minimum drag force on the neutron star. Unfortunately when we extrapolate

1

[Ve(7) e to the surface of Be star, /R, = 1, we obtain a value of 773 km s~ which exceeds

the escape velocity for the Be star of ~ 617 km s~!. In contrast the Keplerian orbital speed

at the surface is ~ 436 km s—!.

The solution loci also allow us to set limits on the maximum v.(r) at any given radius
obtained by setting 1) = m/2 in equation (14). The corresponding values of v,.(r) are very
large reaching values of ~ 4200 km s at small radii. The plot of maximum v,(r) versus
radius is labeled “Mvc” in Fig. 5(b). The maximum v.(r) curve is useful because it allows
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Fig. 5.— Panel (a) shows v,(r) for five different models of v.(r), as discussed in the text,
together with v,(r) = 5(r/R.)"? from Marti and Paredes (1995). Panel (b) shows the five
different models of v.(r) plus an upper limit on v.(r) which is designated Mve. We also show
our derived v,(r) relation corresponding to the v,(r) = 5(r/R,)"2.
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us to constrain any disk model that proposes an inner region that co-rotates with the star.
One example of this is the magnetically confined wind shock (MCWS) model of Babel and
Montmerle (1997), originally proposed to account for the X-ray and radio emission from Ap-
Bp stars. Donati et al. (2001) applied this model to 8 Cep, a pulsating star with recurrent
Be episodes. The existence of an inner co-rotating region would provide one way to account
for the ~ 1100 km s! breadth of the H,, emission lines. The large dash curve in Fig. 5(b)
corresponds to a co-rotating disk model (“Co-rotate”) with v.(R,) = v, = 360 km s~ (see
discussion of v, below). This reaches a maximum v.(r) of ~ 1100 km s at a radius of
~ 3.5R,. To stay within the upper limit of v.(r), designated by curve Mve, v.(r) for a
co-rotation model must decline rapidly beyond the co-rotating region. The Co-rotate curve
in Fig. 5(b) has an r="™ dependence at large radii which is a much steeper fall off than a

Keplerian 7792,

Another model for v.(r) that we examined comes from the work of Mennickent et al.
(1994). They analyzed the rotational properties of Be star envelopes based on the equivalent
widths and peak separation of H, emission. They assumed a power law rotation of the
envelope and obtained a best fit for

ve(r) = v (r/R)7H, (20)

where v, is the equatorial stellar rotation velocity which we set = 360 km s~! from the
measured vsini = 360 km s ! and the fact that sini ~ 1. Compared to the computed
Keplerian orbital speed at the stellar equator of vg., = 436 km s~ !, we find that v, ~
0.83vk.p- Equation (20) for v.(r) is labeled “Mennickent” in Fig. 5(b) and the corresponding
curve for v, (r) is given in Fig. 5(a). In general for each model of v.(r) there are two solutions
to v,(r), the larger of which is physically unreasonable based on the discussion above and is

ignored.

We also considered a Keplerian model of the form v.(r) = \/GMp./r. The curves for
ve(r) and the corresponding v,(r) are labeled “Kepler” in Fig.s 5(b) and (a), respectively.
The values of v,(r) obtained for this model remain close to the [v,.(7)] ., values at small radii.

The behavior of v,.(r) for the co-rotating disk model is markedly different from the
other models mentioned so far. The values of v,.(r) are an order of magnitude larger, with
the maximum occurring at the outer edge of the inner co-rotation region. If the boundary of
the co-rotation region is determined by the magnetic field we might expect v(r) to be larger
outside the co-rotation region, i.e., opposite to what is indicated.

Marti and Paredes (1995) deduced a radial outflow velocity law from a power law wind
density p o< 7~ model used in fitting their near infrared data of LS T +61°303. For a constant

outflow rate the continuity equation leads to a radial outflow of the form v,(r) oc r"=2.
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Adopting an initial v, = 5 km s™! and their best fit n = 3.2, they arrived at the equation

v(r) = 5 x (r/R.)** km s1. This equation is plotted and labeled in Fig. 5(a). We have
combined their model for v,.(r) with our velocity solution loci and derived the v.(r) law that
corresponds to their v, () model. This is plotted and labeled in Fig. 5(b). The curve starts
off parallel to the mvr model (angular momentum conservation) at small radii and then ends
up parallel to the Keplerian solution at larger radii. Extrapolating the curve back to r = R,
yields a v, ~ 1300 km s~!, i.e. much larger than the escape velocity. We tried lowering
the initial value of v, but that exaggerated the kink (slope change) in the v.(r) curve. This
may indicate problems with assuming a simple power law for p(r) in the analysis of the near
infrared data.

Fig. 5(a) can also be used to set a lower limit on any model of the form v, (r) = a
constant velocity. This velocity must exceed the maximum of the [v; ], curve which is ~ 25

km s~ L.

Finally it is of interest to see what v,(r) behavior corresponds to a v.(r) = 0 model.
This curve is labeled “Zero” in Fig. 5(a).

Fig. 6(a) shows the behavior of k(r) p(r) for the Mennickent, Kepler and mvr wind
velocity models, calculated from equations (11) and (9) together with S, (7). Of course if
k(r) was a simple constant independent of r, then the curves in Fig. 6(a) would indicate the
radial dependence of the disk density.

We expect, however, that k(r) is not a constant especially at small radii for the following
reason. The work of Taylor et al. (1992) and Marti and Paredes (1995) indicates that two
accretion maxima will occur, one at periastron and a second on the outbound portion of the
neutron stars orbit. Relativistic electrons produced near periastron will suffer severe inverse-
Compton losses from scattering off photons in the radiation field of the primary giving rise to
X-ray and y—ray energies. Thus near periastron we expect an X-ray and possible gamma-ray
outburst but very little in the way of radio emission. The limited X-ray observations available
do exhibit a maximum around periastron. For the second accretion peak the neutron star
is further from the primary and inverse-Compton losses will be much less. If this picture
is correct, we expect a smaller fraction of the gravitational energy released in accretion to
appear in the form of radio emission near periastron than at larger radii. This implies that
k(r) will be smaller near periastron. We explore this issue further in the next section.
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Fig. 6.— Panel (a) (b) and (c) show the radial dependence of k(r)p(r), K (r) and M respec-
tively, for three different models of v.(r).
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3.2. Estimating the neutron star accretion rate

We can combine our estimate of k(r) p(r) in Fig. 6(a) with independent estimates of
p(r) to estimate k(7). In their analysis of the infrared excess of LS I +61°303, Waters et al.
(1988) assumed a power law radial density dependence of the form

p(r) = po(r/R.) ", (21)

and obtained n = 3.25 and log py = —10.6 (g cm™3), with R, = 10R.. Marti and Paredes
(1995) obtained a very similar result of n = 3.2 and log py = —11.0 (g cm™?).

If the power law assumption for p(r) is valid then we can derive k(r) from a comparison
of our results for k(r) p(r) to equation (21), adopting the more recent results of Marti and
Paredes (1995) for py and n. From k(r) we can compute K(r) from equation (8). The
derived K(r) for three of the models, which is shown in Fig. 6(b), exhibits a maximum of
~ 102 mJy MZ' yr at r/R. ~ 11. The value of K(r) exhibits a decrease at both small and
large values of r. The decrease at small r might reflect the relative importance of inverse-
Compton losses over synchrotron losses at small radii. Another possible reason for a drop in
K(r) at small radii, is a break down in the assumption of spherically symmetric accretion if
the disk thickness is < r,... The decrease at large values of r may indicate a break down in
the assumed power law approximation for p(r) at a radius > 11 x R,, and suggests a much
more rapid decline in disk density at larger radii.

We have estimated the mass accretion rate of the neutron star, M,,, from equation (1)
using the derived K (r) and the measured values of Sg 3(r) averaged over all P, phase. This is
shown in Fig. 6(c). As expected there is a large variation in M,, around the orbit. A typical
value of M,, is ~ 1079 Mg, yr~!. For comparison, the mass outflow rate in the Be star disk
is estimated to be in the range 0.4 — 4.0 x 1077 My, yr~* (Marti and Paredes 1995).

For all three models of v.(r), M,, increases towards periastron reaching values close to
~ 107" Mg, yr~! at an r/R, = 2 for two of the models. For the Kepler model a secondary
accretion peak can be seen around r/ R, ~ 11. For the other two models the accretion simply
rises again towards apastron. The variation in M, with radius ranges from a factor of ~ 25
for the Mennickent v.(r) model to a factor of ~ 80 for the Kepler model.

It is useful to compare M, to the Eddington accretion limit for a neutron star which is
~ 1078 Mg, yr~!. For the Mennickent circular velocity model, M,, corresponds to the range
~ 0.001 to ~ 0.01 Mgqdington- This translates to an expected luminosity range of ~ 10% to

1

~ 10%% ergs s7! which is comparable to estimates of the total X-ray and y-ray luminosity for

LS I +61°303.
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3.3. Phase bin averages

In this section we divide the data into 9 P, phase bins and examine the average disk
properties as a function of radius within these phase bins and the fractional change in density
from that found from the average in Section 3.1. For this analysis to be valid we require
circular symmetry when averaging over approximately 7 orbits or ~ 185 days. One of our 9
P, phase bins contained only one data point so only the results for 8 bins are illustrated in
Fig.s 7 to 10 below.

The above calculations were carried out for four models of v.(r) : (&) [Ve(7)]mer (Mini-
mum v, model), (b) v.(r) = \/GMp./r (Keplerian model),(c) ve(r) = v, 7+ (Mennickent
et al. 1994), and (d) model Co-rotate, with an inner co-rotating region. The results for
cases (a), (b), (¢), and (d), are shown in Fig.s 7, 8, 9, and 10, respectively. Column (a) in
each figure gives the mean and standard deviation of the derived values of v, for 8 different
P, phase bins. The second column gives similar information for the product k(r) p(r). The
third panel gives Aps(r) = the percent change in k(r) p(r) from [k(r) p(r)]awe, the average
value of k(r) p(r) at radius r, where the average is taken over all P, phase. This is discussed
in Section 4.

4. Changes in Disk Density Versus P, Phase

Even if we do not know v.(r), we can still extract very useful information concerning
the fractional change in p(r), provided k(r) is constant in time at any particular radius. For
example if the Be star were to eject an outward moving shell of gas this would give rise to
a modulation in p at any fixed radius. Let p(r,t) = the density at time ¢.

k(r)p(r,t) = Sout(r, )0 out (7 1) (22)

For any particular value of ¢, different points on the solution locus for v,(r), v.(r) lead to
different values for k(r)p(r,t). Now consider Ap¢(r,t) = the fractional change in k(r)p(r,t)
from [k(r) p(7)]ave, the average value of k(r) p(r) at radius r, where the average is taken
over all P, phase.

k(r) p(r,t) — [k(r) p(r)]ave Sout(r 1) U?el,out(r7 t) — [Sour(r) Ugel,out(r)]ave

[]{7(7") p(r)](we a [SOUt(T) ’U?elvouth)]ave ,
(23)
If k(r) is independent of time then this factor cancels out and equation (23) reduces to

Apf(T7 t) -

p(r,1) = [p() e
e (24)

Apg(r,t) =
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Fig. 7.— The three panels show the derived values of (a) the radial component of gas
velocity, v,(r), (b) k(1) p(r), and (c¢) Aps(r), the percentage change in the gas density from
the average, for 8 P, phase bins, assuming the minimum v, velocity model.
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Fig. 8.— The three panels show the derived values of (a) the radial component of gas
velocity, v,(r), (b) k(1) p(r), and (c¢) Aps(r), the percentage change in the gas density from
the average, assuming a Keplerian circular velocity model.
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Fig. 9.— The three panels show the derived values of (a) the radial component of gas
velocity, v,(r), (b) k(1) p(r), and (c¢) Aps(r), the percentage change in the gas density from
the average, assuming the Mennickent et al. (1994) circular velocity model.
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Fig. 10.— The three panels show the derived values of (a) the radial component of gas
velocity, v,(r), (b) k(1) p(r), and (c) Aps(r), the percentage change in the gas density from
the average, assuming model Co-rotate, with an inner corotating region.
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Equations (23) and (24) predict that if k(r) is independent of time then the quantity

SUUt(T7 t) /Ugel,out(ri t) - [SOUt(T) /Ufel,out(rﬂiwe

[SOUt (T) Ugel,out (T)} ave

will be the same for all points on the solution locus for v,(r),v.(r). If this proves to be true
then it is extremely useful property of the fractional change in Sou vy ;. Further it does
not require k£ to be the same at all radii. Thus although we cannot uniquely determine the
density at any one time, we might be able to uniquely determine the fractional change in

density as a function of time and thus study the evolution of disk density radial profile.

In practice we computed the average (at each radius) of Aps(r,t), over a series of orbits
which fall in a particular P, phase bin, since we are interested in the dependence on the disk
properties with P phase. This new average is labeled Apy(r) without the ¢ dependence.

So the test is to see if we obtain the same values of Ap¢(r) for our different choices of v.(r)
models. In practice we stumbled on this property by accident. We first computed Ap(r)
versus P, phase, assuming v.(r) = 0. We repeated the procedure for the four models of v.(r)
discussed above. In all five cases we obtained the same Apg(r), within the uncertainties. In
contrast the P, phase behavior of k(r) p(r) differs significantly over the range of v.(r) models.
The third column of plots in Fig.s 7, 8, 9, and 10 shows Ap¢(r) for the four v.(r) models
mentioned above, for 9 different P, phase bins. One of the phase bins, P, = 0.11 — 0.22
contained only one data value and is thus not shown. The fact that they are all essentially
identical, appears to confirm that k() is a constant in time at any given radius and therefore
that Apg(r) is a good measure of the percentage change in the gas density from the average
at that radius.

The evolution of Aps(r) with P, phase clearly indicates an outward moving density
enhancement which is first detected at small radii in the P, phase bin 0.44-0.56. By the next
P, phase bin the build up reaches a maximum of ~ 60% and extends to around r ~ 8 x R,.
The location of the peak progresses steadily outwards. By P, phase ~ 1.05 the peak is very
close to the outer limit of our detection radius of 15 x R, or ~ 1.05 x 10'® cm. The peak is
followed by a drop in Aps(r) which is deepest at large radii about the time a new positive
enhancement is occurring at small radii (see P> phase bin 0.44-0.56).

To estimate the radial velocity of the shell or density enhancement, we computed the
weighted mean radius of the region exhibiting positive values of Apy(r), for each phase bin.
The weight assigned at each radius was simply the value of Apg(r) at that radius. These
measurements of mean radius versus P, phase, together with the best fit straight line, are
shown in Fig. 11. For P, = 1667 days, the results are consistent with a constant radial
velocity of 1.0 £ 0.13 km s~!. Extrapolating back to the radius of the Be star, we conclude
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Fig. 11.— The weighted mean radius of the positive enhancement in Ap¢(r) versus P, phase.
The intersection of the best fitting line with R,, the radius of the Be star, is indicated by an
arrow.

that ejection process begins at P, phase = 0.43 &£ 0.05. The density enhancement first
becomes detectable when it reaches periastron around P, phase = 0.46. It is somewhat
surprising that the derived shell velocity is approximately a factor of 10 smaller than the
typical radial component of the gas velocity. However, at this time we still do not understand
the mechanism that forms and maintains the disk. Hopefully the present result will provide
a valuable clue. Perhaps the disk enhancement corresponds to the motion of a slowly moving
standing wave pattern.

The scale and general behavior of v,.(r) in Fig.s 7, 8, and 9, corresponding to three of
the v.(r) models, are approximately the same. All three figures demonstrate that v,.(r) is a
minimum in the P, phase bin 0.33-0.44, just prior to the onset of a new ejection cycle. After
the ejection commences the values of v,.(r) increase considerably reaching levels of ~ 40 — 50
km s~1, with evidence for the radius of the peak in v,(r) loosely correlating with the location
of the peak in Apg(r).

The behavior of v,(r) for the co-rotating disk model is markedly different from the
other models. The values of v,.(r) are an order of magnitude larger, with the maximum
always occurring at the outer edge of the inner co-rotation region. If the boundary of the
co-rotation region is determined by the magnetic field we might expect v(r) to be larger
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outside the co-rotation region, i.e., opposite to what is indicated. For none of the models do
we find evidence for any systematic negative velocities which would suggest gas returning to
the star.

5. Discussion

The results of this exploratory study indicate that the ~ 4.6 yr modulation in radio
properties may stem from periodic ejections of a shell (density enhancement) of gas in the
equatorial disk of the Be star. The calculations are based on the orbital parameters given
in section (2). Marti and Paredes (1995) found that M, = 18My, R, = 16R, and e =
0.7 gave a reasonable fit to their infrared data as well, so we re-did our calculations with
this combination, leaving the other parameters the same. Qualitatively our conclusions are
unaltered by this change, and in particular, the same expanding density shell is observed
in Apg(r), the difference is that inner and outer radii are now 1.8 x R, and 10.7 x R,,
respectively.

It is interesting to compare the outward moving density enhancement in the equatorial
disk with the recent results of Zamanov and Marti (2000) on the EW(H,) and AV .
When we correct their P, phase to the latest value of P, = 1667 days (Gregory 2002), their
minimum EW(H,) and maximum AV occur at a P, phase = 0.65, and their maximum
EW(H,) and minimum AV occur at a P, phase = 0.19. The former is closest to our
estimate of the launch of a new shell and the latter corresponds roughly to the phase at
which the shell reaches apastron (see Fig. 10). According to Marlborough et al. (1997)
the H, in the disk of another Be star, i) Persei, is optically thick. In such a situation an
increase in radius of the shell would yield a stronger line and a lower AV, as observed.
This assumes that v.(r) decreases with radius. It is also clear from the results of Zamanov
and Marti (2000), that the equatorial disk never completely disappears for H, is detected at
all P, phases. Our maximum fractional density change is from —40% to +60% which is also
consistent with the idea that the disk never completely disappears.

In this exploratory analysis we have assumed the disk is circularly symmetric. While
this is a reasonable assumption when we average over all P, phase, it might not be valid for
individual orbits or for time intervals that are small compared to P. For example, Vakili et
al. (1998) detected a prograde rotating one-armed density wave in the disk of the Be star ¢
Tauri, based on sub-mas interferometry. The rotation of one-armed density wave in Be star
disks provides an explanation for cyclic variations in the H, V/R ratios that are observed
in some Be stars. ¢ Tauri exhibits a 3.1 year periodic oscillation in the H, V/R ratio. To
date there is no claim of periodic variations in the H, V/R ratio for LS I +61°303.
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Could such a process be responsible for the 4.6 periodic modulation in LS T +61°3037 In
their paper Vakili depict the one-armed density wave as a one-sided bar of enhanced density
which rotates. Such a bar could account for the progressive outburst orbital phase delay
observed for the portion of P, that the bar intersects the outbound portion of the neutron
star orbit. Once the bar passes apastron we would expect the outbursts to be become (a)
weaker or (b) disappear, depending on how large the bar density enhancement is compared
to the rest of the disk.

In case (a) the outburst phase shift should continue to increase to a maximum of one,
which is at odds with the maximum phase shift observed of ~ 0.5 (Gregory 2002). In case
(b) they should disappear for half of a P cycle and for the half of the orbit that they are
observable the total phase shift should be 0.5. The latest results indicate that the outbursts
become weaker for approximately half of a P, cycle but the phase of the weaker outbursts
are still discernible (see Fig. 4 of Gregory 2002). For the half of the P, cycle for which the
outbursts are strong the total phase shift is only 0.25 which is at odds with the predictions
of a one-armed density wave model. Thus the one-armed density wave model does not agree
quantitatively with the measurements for LS T +61°303.

There are two other important questions that remain unanswered. Firstly, what triggers
the periodic shell ejections, and secondly, what gives rise to the disk geometry? What
light does our new analysis shed on these questions? One possibility is that there is some
resonance effect occurring between the neutron star and B star. We propose one worth further
investigation. There has been considerable discussion in the literature (e.g. Zamanov 1995,
Gregory et al. 1999, Zamanov et al. 2001) about possible transitions in the interaction of
the neutron star and the Be star disk from an accretor propellor phase to an ejector phase
following the theory of the gravimagnetic rotator (Lipunov 1992). We suppose for most of the
P cycle, the neutron star is in the accretor propellor phase, and that the propellor action
of the magnetosphere results in particle acceleration which gives rise to the synchrotron
radio emission. After the shell expands beyond apastron the density drops low enough near
apastron that a brief transition is made to the ejector phase around P, ~ 0.4. A relativistic
wind is launched, which upon interacting with the rapidly rotating B star, triggers a new
shell ejection which quenches the ejector phase. This phase might be identified by the brief
appearance of a radio pulsar.

While the exact mechanism responsible for the creation of Be star equatorial disks is still
unknown, several models have been put forward in an attempt to explain the phenomenon.
The first is known as the wind compressed disk (WCD) model. Developed by Bjorkman and
Cassinelli (1992), the model postulates that the characteristically rapid rotation of Be stars
is responsible for the presence of a disk. A gas particle in the stellar wind from a rapidly
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rotating star will enter a tilted orbit. Eventually material from opposite hemispheres will
collide at the equator, causing a disk of compressed gas to form. This model requires a high
stellar rotational velocity consistent with the measured vsini for LS I +61°303.

Another possibility is the magnetically confined wind shock (MCWS) model of Babel and
Montmerle (1997), originally proposed to account for the X-ray and radio emission from Ap-
Bp stars. The MCWS model postulates that disks are formed when stellar winds streaming
from both magnetic hemispheres collide in the magnetic equatorial plane, producing a strong
shock, an extended post shock region and a high density cooling disk. The disk is initially
confined by and co-rotates with the magnetic field of the primary. Donati et al. (2001)
applied this model to § Cep, a pulsating star with recurrent Be episodes. They found no
basic incompatibility between the MCWS model and Be star phenomenology. In this model
the disk collapses when the mass of the disk can no longer be supported by the magnetic
field and predicts flow velocities back to the star in the inner regions. They propose that
this collapse is the cause for the recurrent Be episodes.

As shown in Fig. 5(a), our wind solution loci limit any co-rotation region to within
r ~ 3.5R,. According to the MCWS model we would expect to detect motions of the disk
material back to the Be star in the inner regions of the disk, but we only found evidence
for an outward flow. Our analysis also indicates that such a model would require very large
values of v,(r) within the co-rotating region, up to 400 km s™!, i.e. much larger equatorial
outflow velocities than have previously been proposed for a Be star disk. The other models
predict v,.(r) behavior which is consistent with previous estimates for disk outflow velocities.
At present, no magnetic field has been reported for the primary of LS I +61° 303, so it
is difficult to say how applicable the model is. Since LS I 461° 303 is a relatively bright
(my ~ 10.6) it may be possible to set meaningful limits on the magnetic field strength of

the primary from spectropolarimetry.

6. Conclusions

In this paper we have explored a new method for deriving the gas velocity and density in
the Be star equatorial envelope of LS T +61°303, from the measured optically thin synchrotron
radio emission at 8.3 GHz. The method yields a solution locus in the v,,v. plane which is
a circle. Assuming five different models for v.(r), we derive the corresponding v,.(r) and
information about the product of p(r) and a factor K(r) that relates the 8.3 GHz flux
density to the mass accretion rate by the neutron star. We also computed the v.(r) behavior
expected for the v,(r) model derived by Marti and Paredes (1995) from their fit to near
infrared measurements of LS I +61°303.
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Although the derived densities depend on the assumed circular velocity law, the frac-
tional change in density, Aps(r), was found to be independent of the assumed v.(r). The
variations of Ap¢(r) with the ~ 4.6 year (/%) modulation phase of LS I +61°303, indicates an
outward moving density enhancement or shell in the equatorial disk with a velocity of ~ 1.0
km s~!. Extrapolating back to the radius of the Be star, we conclude that ejection process
begins at P, phase = 0.43 4+ 0.05. The density enhancement first becomes detectable when
it reaches periastron around P, phase = 0.46. We propose that each new shell ejection may
be triggered by the interaction of a short lived relativistic wind from the neutron star, with
the rapidly rotating Be star. The next occurrence of this phenomena is expected around
JD ~ 2,452,418 4+ 83, which corresponds to the interval March 1 to August 15, 2002. The
detection of a radio pulsar at this time would provide strong support for the presence of a
relativistic wind. Our investigation did not find evidence for systematic negative velocities
at any P, phase or radius, which would suggest gas returning to the star.

By comparing with independent estimates of p(r) (Waters et al. 1988, Marti and Paredes
1995) we estimated K (r). The value of K(r) exhibits a decrease at both small and large
values of r. The decrease at small » might reflect the relative importance of inverse-Compton
losses over synchrotron losses at small radii. The decrease at large values of » may indicate
a break down in the assumed power law approximation for p(r) at a radius > 11 x R,, and
suggests a much more rapid decline in disk density at larger radii.

We also estimated the mass accretion rate of the neutron star, M, from equation (1)
using the derived K (r) and the measured values of Sg3(r) averaged over all P, phase. Our
estimates of M,, are in the range 1079 — 10~'* M, yr~!. For comparison, the mass outflow
rate in the Be star disk is estimated to be in the range 0.4 — 4.0 x 1077 (Martf and Paredes
1995). For the Mennickent circular velocity model, M,, corresponds to the range ~ 0.001 to
~ 0.01 of the Eddington accretion limit for a neutron star. This translates to an expected
luminosity range of ~ 10% to ~ 1030 ergs s~! which is comparable to estimates of the total
X-ray and v-ray luminosity for LS I +61°303.
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7. Appendix

In this appendix we provide a derivation of equation (12). We use as our starting point
equation (11), the relevant part of which is repeated here.

SO’LLt(r) U?el,out(r) = Sln(/r) Ufel,in(r) (25>
Take the 2/3 root of each side.

SIL(r) W2 (1) = S (1) 02 50 (1) (26)

out rel,out in rel,in
Now substitute for v ,,,(7) from equation (9)

(Un(1)? 4+ v:(1)? + v, (1)? = 20, (7)ve(r) sin G(1) — 20, ()0, (1) cOS (7)) _ S8 (r)
(U (1)2 4+ 0a(1)2 + v,.(1)? = 20, (1)v.(1) Sin @ (1) — 20, (1) v, (1) cOS P (7)) 5.2/3(7“) )

wm

(27)

where ¢(r) is the angle between v,(r) and v,.(r) on the inbound part of the orbit, and ¢'(r)
is the corresponding angle for the outbound portion of the orbit. Now

sing'(r) =sing(r) and  cos¢'(r) = —cos o(r). (28)
After rearranging equation (27) we obtain
Up(7)? + 20a (1) (r) B(r) cos §(r) + ve(r)* = 20a(r)ve(r) sind(r) = —va(r)®,  (29)

where,
Spue(r) + Sa°) _ ()™ 4

out
T S ) T (1 o
The equation for a circle, offset from the origin, is given by
(z —20)” + (y — v0)* = R”. (31)
This can be rewritten as
2% — 2z +y* — 2yoy = R* — 22 — 2. (32)
Equation (29) can thus be seen to be a circle with center at v,.(r) = —3(r)v,(r) cos ¢(r) and

ve(r) = vu(r) sin@(r). The radius R(r) = \/B(r)2 — 1 v,(r) | cos o(r)|.



